

EUV Resist Contrast Loss Determination Using Interference Lithography

Andreas Langner*, Harun H. Solak, Vaida Auzelyte, Yasin Ekinci, Christian David, Jens Gobrecht Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; *andreas.langner@psi.ch

Roel Gronheid

IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium

Eelco van Setten, Koen van Ingen Schenau, Kees Feenstra ASML Netherlands B.V., De Run 6501, 5504 DR Veldhoven, The Netherlands

Motivation & Introduction

- Resist-induced contrast loss is becoming increasingly important for smaller pitches
- Current resists have ~10nm sigma blur, whereas EUV targets 22-27nm to start with ⇒ Resist consumes >50% of the contrast budget and dominates imaging:

 EUV-IL: can be used to determine resist contrast loss independently from the exposure tool performance

Aerial image Resist contrast Resist thickness after development Aerial image Aerial image Resist thickness Aerial image Resist thickness Aerial image Resist thickness Aerial image

EUV-IL Setup

- Light source: undulator (synchrotron)
- · Coherent illumination with 13.5nm wavelength
- Patterns obtained by interference of gratings
- Gratings written with e-beam

11nm lines and 19nm dots exposed in HSQ [3]

Normalized Image Log-Slope (NILS)

• Aerial image of an interference-based exposure tool:

· A measure for image contrast is NILS:

$$NILS = L \frac{\partial \ln I}{\partial x} = \frac{A}{A + 2B} \pi = \mu \pi$$

NILS is pitch-independent in interference lithography

Exposure Latitude (EL)

- EL=percent change in dose for ±10% change in linewidth (LW)
- Ideal interference lithography experiment: $EL = 10 \cdot NILS = 10\pi$
 - ⇒ No resist contrast loss
 - \Rightarrow Zero background (B=0)
- Ratio of EL to 10·NILS provides a direct measure of how well the aerial image is transferred into the resist:
 - ⇒ EL/(10·NILS)=1: resist image fully determined by aerial image, i.e. no resist contrast loss
 - ⇒ EL/(10·NILS)<1: resist causes contrast loss

Preliminary Results

- For EL measurements EUV resists were exposed with several pitches in the range of 50 to 200nm
- SEM top down analysis of latent resist images
- LW characterization using software-based characterization tool [4]
- EL over pitch data fitted with Modulation Transfer Function (MTF) via acid diffusion length (LD) [5]

Tested	Tone	CA	L_{D}^{*}	EL / (10·NILS)	EL / (10·NILS)	R ² of
Resist			[nm]	at 27nm hp	> 0.6 at hp	fit
Fujifilm FEVS-P1101	positive	yes	32	0.145	67 nm	0.85
Shin-Etsu SEVR-40	positive	yes	17	0.423	37 nm	0.80
HSQ	negative	no	13	0.592	28 nm	0.84

 st preliminary values, further work necessary

Background

- Caused by mask roughness or higher diffraction orders
- Estimated to be in the range of a few percent
- Lowers the tool contrast as characterized by NILS (see table below)
- Example: accumulated background of 5% decreases tool contrast by 10%

Background	NILS value	
0%	1.00π	
5%	0.90π	
10%	0.82π	
15%	0.74π	
20%	0.67π	

Conclusions & Outlook

- Alternative method based on interference lithography established for EUV resist contrast loss characterization
- For target hp 27nm resist contrast loss of the tested resists seems to be too high
- Further work is necessary to give a more precise number for the tool contrast
- References
- [1] K. van Ingen Schenau et al., Proc. SPIE 6923, 692314 (2008).
- [2] H. H. Solak, J. Phys. D 39, R171-R188 (2006).
- [3] V. Auzelyte et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).
- LERDEMO from National Center for Scientific Research, Athens, Greece.
- [5] D. van Steenwinckel et al., J. Micro/Nanolith. MEMS MOEMS 7, 023002